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Abstract

This paper deals with the use of the Conjugate Gradient Method of function estimation with Adjoint Problem for

the simultaneous identification of two boundary conditions in natural convection inverse problems in two-dimensional

irregular cavities. The unknown boundary conditions are estimated with no a priori information about their functional

forms. Irregular geometries in the physical domain are transformed into regular geometries in the computational do-

main by using an elliptic scheme of numerical grid generation. Therefore, the proposed formulation can be applied to

the solution of inverse problems in different geometries. The methodology is applied to cases involving an annular

cavity, where the position- and time-dependent heat fluxes are unknown at the inner and outer surfaces. The effects of

the number and position of temperature sensors on the inverse problem solution are also addressed in the paper.
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1. Introduction

Forced and natural convection problems have been

gaining the attention of groups aiming at the develop-

ment of solution procedures for inverse problems, as

well as of groups mainly involved with the physical/ap-

plication aspects of this class of problems. Several recent

works dealing with inverse convection problems can be

found in Refs. [1–33]. However, with few exceptions [26–

28,30], the above papers have addressed the estimation

of one single unknown quantity.

The use of simulated measurements has been widely

used to verify the capabilities of inverse problem solu-

tion procedures [1–35]. In such approach, the direct

problem is solved with a priori established values for the

unknown parameters or functions. The solution of the

direct problem then provides exact measurements to be

used as input data for the inverse problem solution
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procedure. Note, however, that actual measurements

generally contain errors. Therefore, in order to simulate

actual measured data, random errors are added to the

exact measurements. Standard statistical hypotheses

generally assumed for the measurement errors include

they being regarded as additive, uncorrelated, normally

distributed, with zero mean and with constant and

known standard deviation [33–35]. By using simulated

measurements obtained in such a manner, the inverse

problem solution procedure shall be able to recover the

values a priori established for the unknown parameters

or functions. Different important issues can then be

addressed with the use of simulated measurements, such

as the stability of the solution procedure with respect to

the measurement errors, as well as the design of the

experiment, including the estimation of the number and

position of sensors required for accurate inverse prob-

lem solutions.

A fact usually overlooked when simulated measure-

ments are used for the inverse analysis is that the errors

in the mathematical model for the physical problem

under picture, as well as in the solution technique for the

direct problem, are neglected. Such is the case because
ed.
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Nomenclature

Cp specific heat

d direction of descent

F objective functional

K thermal conductivity

M , N number of grid lines in the n and g direc-

tions, respectively

P pressure

q1, q2 applied heat fluxes at the boundaries g ¼ 1

and g ¼ N , respectively

S number of sensors

S/ vector of source functions given by Eq. (3c)

t time

tf final time

T estimated temperature

u, v velocity components in x and y directions,

respectivelyeUU , eVV contravariant velocity components normal

to n and g coordinate lines, respectively

x, y Cartesian coordinates in the physical do-

main

Greek symbols

b search step size

D variation

eRMS RMS error

c, v conjugation coefficients

C/ vector of diffusion coefficients given by Eq.

(3b)

u vector of conserved variables given by Eq.

(3a)

k vector of Lagrange multipliers given by Eq.

(9)

ls measured temperature by sensor s
q density

r standard deviation of the measurement er-

rors

n, g Cartesian coordinates in the computational

domain

l dynamic viscosity

rF gradient of the objective functional

Subscripts

est, ex estimated and exact heat fluxes

s sensor location

1, 2 refer to the boundaries at g ¼ 1 and g ¼ N ,

respectively

Superscript

k iteration number
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the mathematical formulation and the solution tech-

nique for the direct problem, used to generate the sim-

ulated measurements, are the same used as part of the

inverse problem solution procedure. In fact, for solving

the inverse problem and for generating the simulated

measurements, many analysts solve the direct problem

disregarding the accuracy of its solution, which can re-

sult in unrealistic simulated measurements that may not

be identified through the inverse analysis.

In this paper, we examine the simultaneous estima-

tion of the boundary heat fluxes at two surfaces of a

cavity, by using simulated temperature measurements

taken in its interior. The fluid inside the cavity under-

goes natural convection as a result of the prescribed

boundary conditions. The natural convection problem is

formulated in terms of generalized boundary-fitted co-

ordinates [36], by using Boussinesq’s approximation.

The irregular geometry in the physical domain is trans-

formed into a regular geometry in the computational

domain, so that one single formulation can be used for

the solution of inverse problems in cavities of different

geometries. For the solution of the inverse problem, we

consider the conjugate gradient method of function es-

timation with adjoint problem [34,35]. The direct prob-

lem and the auxiliary problems required by this method
are numerically solved with finite-volumes, by utilizing

the WUDS [37] interpolation scheme. The SIMPLEC

method [38] was utilized for the treatment of the pres-

sure–velocity coupling, for the computation of the ve-

locity and pressure fields on co-located grids. Test-cases

involving the simultaneous estimation of the heat fluxes

at the inner and outer surfaces of an annular cavity are

examined. The most general case, where the unknown

heat fluxes vary in time and along the boundary sur-

faces, is addressed below.
2. Physical problem and mathematical formulation

The physical problem under picture in this paper

involves the transient laminar natural convection of a

fluid inside a two-dimensional irregular cavity, such as

the one depicted in Fig. 1. The boundary of the cavity is

assumed to be defined by four surfaces, which are

transformed into the computational domain as the sur-

faces n ¼ 1, n ¼ M , g ¼ 1 and g ¼ N . The fluid is ini-

tially at rest and at the uniform temperature Tc. At time

zero, the surfaces at g ¼ 1 and at g ¼ N are subjected to

space- and time-dependent heat fluxes q1ðn; tÞ and

q2ðn; tÞ, respectively. The other two surfaces involve
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Fig. 1. Geometry for the irregular cavity.
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symmetry boundary conditions. The fluid properties are

assumed constant, except for the density in the buoy-

ancy term, where we consider Boussinesq’s approxima-

tion valid.

The mathematical formulation for this physical

problem can be written in vector form in terms of the

following conservation equation in the generalized

Cartesian coordinates:

oðJquÞ
ot

þ oð eUUquÞ
on

þ oðeVV quÞ
og

¼ o

on
JC/ a

ou
on

��
þ d

ou
og

��

þ o

og
JC/ d

ou
on

��
þ b

ou
og

��
þ JS/ ð1Þ

where

a ¼ n2x þ n2y ; b ¼ g2x þ g2y ;

d ¼ nxgx þ nygy ; J ¼ xnyg � xgyn;eUU ¼ Jðunx þ vnyÞ; eVV ¼ Jðugx þ vgyÞ ð2a–fÞ

We note that eUU and eVV denote the contravariant veloc-

ities in the n and g directions, respectively, while J de-

fines the Jacobian of the transformation from the

physical domain into the computational domain. The

general conservation variable, as well as the diffusion

coefficient and the source term for the mass, momentum

and energy conservation equations, are given in vector

form respectively as:
u ¼

1

uðn; g; tÞ
vðn; g; tÞ
T ðn; g; tÞ

26664
37775; C/ ¼

0 0 0 0

0 l 0 0

0 0 l 0

0 0 0 K
Cp

266664
377775;

S/ ¼

0

� oP ðn; g; tÞ
ox

� oPðn; g; tÞ
oy

� qgf1� b½T ðn; g; tÞ � Tref �g

0

26666664

37777775
ð3a–cÞ

We note in the Eq. (3c) that the positive y-axis in the

physical domain is supposed to be aligned with the op-

posite direction of the gravitational acceleration vector.

These equations are solved, subjected to the following

boundary and initial conditions.

JC/ a
ou
on

�
þ b

ou
og

�
¼ 0 at n ¼ 1 and n ¼ M ;

1 < g < N ; for t > 0 ð4aÞ

u ¼ v ¼ 0 at g ¼ 1 and g ¼ N ;

1 < n < M ; for t > 0 ð4bÞ

K d
oT
on

�
þ b

oT
og

�
¼ �q1ðn; tÞ

ffiffiffi
b

p

at g ¼ 1; 1 < n < M ; for t > 0 ð4cÞ

K d
oT
on

�
þ b

oT
og

�
¼ q2ðn; tÞ

ffiffiffi
b

p

at g ¼ N ; 1 < n < M ; for t > 0 ð4dÞ

u ¼ v ¼ 0 for t ¼ 0 in the region ð4eÞ

T ¼ Tc for t ¼ 0 in the region ð4fÞ
3. Direct problem and inverse problem

The direct problem associated with the mathematical

formulation given by Eqs. (1)–(4) involves the determi-

nation of the transient velocity and temperature fields in

the cavity, from the knowledge of the cavity geometry,

of the physical properties and of the initial and bound-

ary conditions. Appropriately formulated direct prob-

lems are mathematically classified as well-posed. The

solution of a well-posed problem must satisfy the con-

ditions of existence, uniqueness and stability with re-

spect to the input data [33–35].

Inverse heat transfer problems involve the estimation

of at least one of the quantities required for the well-

posedness of the direct problem, by using velocity, heat

flux and/or temperature measurements. The inverse
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problem of interest in this work involves the simulta-

neous estimation of the boundary heat fluxes q1ðn; tÞ and
q2ðn; tÞ, at the surfaces g ¼ 1 and g ¼ N , respectively.

Temperature measurements taken inside the cavity at

appropriate locations are used for the estimation of such

boundary fluxes.

Differently from direct problems, inverse problems

are mathematically classified as Ill-posed. The existence

of a solution for an inverse heat transfer problem may be

assured by physical reasoning for several cases. On the

other hand, the uniqueness of the solution of inverse

problems can be mathematically proved only for some

special cases. Also, the inverse problem is very sensitive

to random errors in the measured input data, thus re-

quiring special techniques for its solution in order to

satisfy the stability condition [33–35]. In fact, a suc-

cessful solution of an inverse problem generally involves

its reformulation as an approximate well-posed problem

and makes use of some kind of regularization (stabil-

ization) technique. In several methods, the solution for

the inverse problem is obtained through the minimiza-

tion of an L2 norm in the space where the unknown

quantity belongs to. For the solution of the inverse

problem under picture in this work we consider the

minimization of the following functional:

F ½q1ðn; tÞ; q2ðn; tÞ�

¼ 1

2

Z tf

t¼0

XS

s¼1

½T ðns; gs; t; q1; q2Þ � lsðtÞ�
2
dt ð5Þ

where tf denotes the final time, S is the number of sen-

sors used in the analysis, while lsðtÞ and T ðns; gs; t; q1; q2Þ
are the measured and estimated temperatures, respec-

tively, at the measurement positions (ns; gs), for

s ¼ 1; . . . ; S. The estimated temperatures are obtained

from the solution of the direct problem by using esti-

mates for the boundary heat fluxes q1ðn; tÞ and q2ðn; tÞ.
We note that the physical problem under picture in-

volves transient natural convection with the surfaces at

g ¼ 1 and g ¼ N subjected to heat fluxes q1ðn; tÞ and

q2ðn; tÞ. The recovery of this type of functions via inverse

analysis requires transient measurements taken at sev-

eral locations inside the cavity.
4. Sensitivity problems

The sensitivity problem is used to determine the

variation of the dependent variables due to changes in

the unknown quantity. Since the present work deals with

the estimation of two unknown functions, two sensitiv-

ity problems are required in the analysis. They are de-

rived by considering perturbations in the boundary heat

fluxes each at a time, as described next.

Let us consider that the temperature T ðn; g; tÞ un-

dergoes a variation eDT1ðn; g; tÞ, when the boundary heat
flux q1ðn; tÞ is perturbed by eDq1ðn; tÞ, where e is a small

real number. Similarly, since the temperature, velocities

and pressure are coupled in the natural convection

problem, the velocities and the pressure undergo varia-

tions eDu1ðn; g; tÞ, eDv1ðn; g; tÞ and eDP1ðn; g; tÞ. In order

to derive the sensitivity problem resulting from the

perturbation in q1ðn; tÞ, we apply the following limiting

process [34,35]:

DDq1T ðn; g; tÞ ¼ lim
e!0

Leðq1eÞ � Lðq1Þ
e

¼ 0 ð6Þ

where Leðq1eÞ and Lðq1Þ are the operator forms of the

direct problem written for the perturbed [q1ðn; tÞþ
eDq1ðn; tÞ] and unperturbed q1ðn; tÞ heat fluxes at the

boundary g ¼ 1, respectively.

A similar procedure is used for the derivation of the

sensitivity problem for the functions DT2ðn; g; tÞ,
Du2ðn; g; tÞ, Dv2ðn; g; tÞ and DP2ðn; g; tÞ, resultant from

the perturbation of the heat flux q2ðn; tÞ by eDq2ðn; tÞ, at
the boundary g ¼ N .

We then obtain the sensitivity problems for the de-

termination of the functions Dujðn; g; tÞ, for j ¼ 1, 2,

respectively as:

oðJqDujÞ
ot

þ
oð eUUjqDujÞ

on
þ
oðeVVjqDujÞ

og
þ
oðD eUUjqujÞ

on

þ
oðDeVVjqujÞ

og

¼ o

on
JC/ a

oðDujÞ
on

��
þ d

oðDujÞ
og

��

þ o

og
JC/ d

oðDujÞ
on

��
þ b

oðDujÞ
og

��
þ JDS/

j

in 1 < n < M ; 1 < g < N ; for t > 0 ð7aÞ

JC/ a
oðDujÞ
on

�
þ b

oðDujÞ
og

�
¼ 0

at n ¼ 1 and n ¼ M ; 1 < g < N ; for t > 0 ð7bÞ

Duj ¼ Dvj ¼ 0 at g ¼ 1 and

g ¼ N ; 1 < n < M ; for t > 0 ð7cÞ

K d
oðDTjÞ
on

�
þ b

oðDTjÞ
og

�
¼ �d1jDq1ðn; tÞ

ffiffiffi
b

p

at g ¼ 1; 1 < n < M ; for t > 0 ð7dÞ

K d
oðDTjÞ
on

�
þ b

oðDTjÞ
og

�
¼ d2jDq2ðn; tÞ

ffiffiffi
b

p

at g ¼ N ; 1 < n < M ; for t > 0 ð7eÞ

Du ¼ 0 for t ¼ 0 in the region ð7fÞ

where u, C and S/ are given by Eqs. (3a–c), respectively

and
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dij ¼
0; for i 6¼ j
1; for i ¼ j

�
ð8Þ

Note in Eqs. (3a–c) and (7a) that the correspondent of

the energy and y-momentum equations for the sensitiv-

ity problems are coupled through the variation of the

buoyancy term. Thus, for the sensitivity problems the

mass, x-momentum, y-momentum and energy equations

must be solved simultaneously, for j ¼ 1, 2.
5. Adjoint problem

The adjoint problem is derived by multiplying the

general conservation Eq. (1) written for u � 1 (mass

equation) by the Lagrange multiplier k1ðn; g; tÞ, Eq. (1)
written for u � uðn; g; tÞ (x-momentum equation) by the

Lagrange multiplier k2ðn; g; tÞ, Eq. (1) written for

u � vðn; g; tÞ (y-momentum equation) by the Lagrange

multiplier k3ðn; g; tÞ, Eq. (1) written for u � T ðn; g; tÞ
(energy equation) by the Lagrange multiplier k4ðn; g; tÞ
and integrating over the time and space domains. The

resulting expression is then added to the functional given

by Eq. (5) in order to obtain an extended functional.

Then, by defining the Lagrange multiplier vector as

k ¼

k1ðn; g; tÞ
k2ðn; g; tÞ
k3ðn; g; tÞ
k4ðn; g; tÞ

2664
3775 ð9Þ

we can write the extended functional as:

F ½q1ðn; tÞ; q2ðn; tÞ�

¼ 1

2

Z M

n¼1

Z N

g¼1

Z tf

t¼0

XS

s¼1

ðTs � lsÞ
2dðr� rsÞdtdgdn

þ
Z M

n¼1

Z N

g¼1

Z tf

t¼0

oðJquÞ
ot

(*
þ oð eUUquÞ

on
þ oðeVV quÞ

og

� o

on
JC/ a

ou
on

��
þ d

ou
og

��

� o

og
JC/ d

ou
on

��
þ b

ou
og

��
� JS/

)
; k

+
J dtdgdn

ð10Þ

where dð�Þ is the Dirac delta function, rs is the vector

with the sensor position (ns; gs), for s ¼ 1; . . . ; S and h:; :i
denotes the vector dot product.

We now perturb q1ðn; tÞ by eDq1ðn; tÞ, uðn; g; tÞ by

eDu1ðn; g; tÞ and S/ðn; g; tÞ by eDS/
1 ðn; g; tÞ in Eq. (10)

and apply the following limiting process to obtain the

directional derivative of the functional F ½q1ðn; tÞ; q2ðn; tÞ�
in the direction of the perturbation Dq1ðn; tÞ [34,35]:
DDq1F ½q1ðn; tÞ; q2ðn; tÞ� ¼ lim
e!0

Feðq1eÞ � F ðq1Þ
e

¼ 0 ð11Þ

where Feðq1eÞ and F ðq1Þ denote the functional (10)

written for the perturbed [q1ðn; tÞ þ eDq1ðn; tÞ] and un-

perturbed q1ðn; tÞ heat fluxes at the boundary g ¼ 1,

respectively. The following expression results:

DDq1F ½q1ðn; tÞ; q2ðn; tÞ�

¼
Z M

n¼1

Z N

g¼1

Z tf

t¼0

XS

s¼1

ðTs � lsÞdðr� rsÞDT1s dtdgdn

þ
Z M

n¼1

Z N

g¼1

Z tf

t¼0

oðJqDu1Þ
ot

(*
þ oð eUU1qDu1Þ

on

þ oðeVV1qDu1Þ
og

þ oðD eUU1qu1Þ
on

þ oðDeVV1qu1Þ
og

� o

on
JC/ a

oðDu1Þ
on

��
þ d

oðDu1Þ
og

��
� o

og
JC/ d

oðDu1Þ
on

��
þ b

oðDu1Þ
og

��

� JDS1

)
; k

+
J dtdgdn ð12Þ

By employing integration by parts in the second integral

term appearing on the right-hand side of Eq. (12), uti-

lizing the initial and boundary conditions of the sensi-

tivity problem for DT1ðn; g; tÞ and also requiring that the

coefficients of DT1ðn; g; tÞ in the resulting equation van-

ish, the following adjoint problem is obtained:

� oðJ 2qwÞ
ot

� oð eUUqwJÞ
on

� oðeVV qwJÞ
og

¼ o

on
JC/ a

oðwJÞ
on

��
þ d

oðwJÞ
og

��

þ o

og
JC/ d

oðwJÞ
on

��
þ b

oðwJÞ
og

��
þ S/

k

in 1 < n < M ; 1 < g < N ; for t < tf ð13aÞ

JC/ a
oðwJÞ
on

�
þ b

oðwJÞ
og

�
¼ 0

at n ¼ 1 and n ¼ M ; 1 < g < N ; for t > 0 ð13bÞ

k2 ¼ k3 ¼ 0

at g ¼ 1 and g ¼ N ; 1 < n < M ; for t > 0 ð13cÞ

JK d
ok4
on

�
þ b

ok4
og

�
¼ 0 at g ¼ 1 and

g ¼ N ; 1 < n < M ; for t > 0 ð13dÞ

w ¼ 0 for t ¼ tf in the region ð13eÞ

where
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S/
k ¼

o eUUk

on
þ oeVVk

og

�J
oðk1JÞ
ox

þ u;
oðqwJ 2nxÞ

on
þ oðqwJ 2gxÞ

og

� �� 	
�J

oðk1JÞ
oy

þ u;
oðqwJ 2nxÞ

on
þ oðqwJ 2gxÞ

og

� �� 	
qgbk3J 2 �

PS
s¼1ðTs � lsÞdðr� rsÞ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

w ¼

0

k2ðn; g; tÞ

k3ðn; g; tÞ

k4ðn; g; tÞ

0BBBBB@

1CCCCCA ð14a; bÞ

and

eUUk ¼ J 2ðk2nx þ k3nyÞ ð15aÞ

eVVk ¼ J 2ðk2gx þ k3gyÞ ð15bÞ

are the contravariant components of the Lagrange

multipliers k2ðn; g; tÞ and k3ðn; g; tÞ multiplied by the

Jacobian.

Note that the Lagrange multiplier k1ðn; g; tÞ appears
in the second and third components of the source term

vector Sk, just like the pressure appears in the source

term of the x and y-momentum equations. Similarly, the

Lagrange multipliers k2ðn; g; tÞ and k3ðn; g; tÞ are equiv-

alent to the u and v velocity components, while the

Lagrange multiplier k4ðn; g; tÞ is equivalent to the tem-

perature in the energy equation. Therefore, the adjoint

problem given by Eqs. (13)–(15) is also coupled and

needs to be solved with the same technique used for the

direct problem.

We note that the adjoint problem involves final

conditions given by Eq. (13e) (instead of the usual initial

conditions), as well as negative transient and convective

terms in the governing Eq. (13a). However, it can be

transformed into a regular problem by utilizing the

following suitable transformations of the independent

variables:

n� ¼ M � n; g� ¼ N � g; t� ¼ tf � t ð16a–cÞ

A limiting process analogous to Eq. (11) is used in

order to obtain the directional derivative of the func-

tional F ½q1ðn; tÞ; q2ðn; tÞ� in the direction of the pertur-

bation Dq2ðntÞ [34,35]. After performing similar

manipulations we obtain the adjoint problem resulting

from the perturbation in q2ðn; tÞ, which is identical to

that given by Eqs. (13)–(15) resulting from the pertur-

bation in q1ðn; tÞ. Therefore, one single adjoint problem

needs to be solved at each iteration of the conjugate

gradient method, despite the fact that two unknown

functions are to be estimated.
6. Gradient equations

In the process of obtaining the adjoint problem re-

sulting from the perturbation in q1ðn; tÞ, the directional

derivative of the functional in the direction Dq1ðn; tÞ
reduces to

DDq1F ½q1ðn; tÞ; q2ðn; tÞ�

¼ �
Z M

n¼1

Z tf

t¼0

ffiffiffi
b

p

Cp
J 2k4ðn; g; tÞ

" #
g¼1

Dq1ðn; tÞdtdn

ð17Þ

We now invoke the hypothesis that the unknown func-

tions belong to the space of square integrable functions

in the domain �0; tf ½��1;M ½ of interest. The directional

derivative of F ½q1ðn; tÞ; q2ðn; tÞ� in the direction of the

perturbation Dq1ðn; tÞ is given by [34–36]:

DDq1F ½q1ðn; tÞ; q2ðn; tÞ�

¼
Z M

n¼1

Z tf

t¼0

rF ½q1ðn; tÞ�Dq1ðn; tÞ
ffiffiffi
b

p
J dtdn ð18aÞ

Hence, by comparing Eqs. (17) and (18a), we obtain the

gradient equation for the estimation of q1ðn; tÞ as:

rF ½q1ðn; tÞ� ¼ � Jk4ðn; g; tÞ
Cp






g¼1

ð18bÞ

An analogous procedure is used in order to obtain

the gradient equation of the functional for the estima-

tion of the function q2ðn; tÞ. In such case, we obtain the

gradient equation as:

rF ½q2ðn; tÞ� ¼ � Jk4ðn; g; tÞ
Cp






g¼N

ð19Þ
7. Iterative procedure

The iterative procedure of the conjugate gradient

method, as applied to the simultaneous estimation of

qjðn; tÞ, for j ¼ 1, 2, is given by [34,35]:

qkþ1
j ðn; tÞ ¼ qkj ðn; tÞ þ bk

j d
k
j ðn; tÞ; j ¼ 1; 2 ð20aÞ

where k is the number of iterations.

We used in this work Powell–Beale’s version of the

conjugate gradient method [39,41]. We also tested in this

work the most common versions of the conjugate gra-

dient method of Fletcher–Reeves and Polak–Ribiere

[34,35,39]. However, for several test-cases they resulted

in non-convergence of the iterative procedure because of

the strong non-linear character of the physical problem

under picture. As in Ref. [39], we found Powell–Beale’s

version of the conjugate gradient method more stable

and robust than these two other versions. The directions
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of descent for Powell–Beale’s version of the conjugate

gradient method, dk
j ðn; tÞ, are obtained from

dk
j ðn; tÞ ¼ �rF ½qkj ðn; tÞ� þ ckj d

k�1
j ðn; tÞ þ vzjd

z
j ðn; tÞ;

j ¼ 1; 2 ð20bÞ

where ckj and vzj are the conjugation coefficients. The

superscript z in Eq. (20b) denotes the iteration number

where a restarting strategy is applied to the iterative

procedure of the Conjugate Gradient Method.

The conjugation coefficients ckj and vzj are given as

[39,41]:
ckj ¼
RM
n¼1

R tf
t¼0

frF ½qkj ðn; tÞ� � rF ½qk�1
j ðn; tÞ�grF ½qkj ðn; tÞ�

ffiffiffi
b

p
J dtdnRM

n¼1

R tf
t¼0

frF ½qkj ðn; tÞ� � rF ½qk�1
j ðn; tÞ�gdk�1

j ðn; tÞ
ffiffiffi
b

p
J dtdn

for k ¼ 1; 2; . . . ; with c0j ¼ 0 for k ¼ 0; j ¼ 1; 2

ð20cÞ

vzj ¼
RM
n¼1

R tf
t¼0

frF ½qzþ1
j ðn; tÞ� � rF ½qzjðn; tÞ�grF ½qkj ðn; tÞ�

ffiffiffi
b

p
J dtdnRM

n¼1

R tf
t¼0

frF ½qzþ1
j ðn; tÞ� � rF ½qzjðn; tÞ�gdz

j ðn; tÞ
ffiffiffi
b

p
J dtdn

for z ¼ 1; 2; . . . ; with v0j ¼ 0 for z ¼ 0; j ¼ 1; 2

ð20dÞ
In accordance with Powell [41], the application of the

conjugate gradient method with the conjugation coeffi-

cients given by Eqs. (20c) and (20d) requires restarting

when gradients at successive iterations tend to be non-

orthogonal (which is a measure of the local non-linearity

of the problem) or when the direction of descent is not

sufficiently downhill. Restarting is performed by making

vzj in Eq. (20b) equal to zero.

The non-orthogonality of gradients at successive it-

erations is tested by using:

ABS

Z M

n¼1

Z tf

t¼0

rF ½qk�1
j ðn; tÞ�rF ½qkj ðn; tÞ�

ffiffiffi
b

p
J dtdn

� �

P 0:2

Z M

n¼1

Z tf

t¼0

rF ½qkj ðn; tÞ�
n o2 ffiffiffi

b
p

J dtdn ð21aÞ

where ABS(Æ) denotes the absolute value.

A non-sufficiently downhill direction of descent (i.e.,

the angle between the direction of descent and the neg-

ative gradient direction is too large) is identified if either

of the following inequalities are satisfied:

� 1:2

Z M

n¼1

Z tf

t¼0

frF ½qkj ðn; tÞ�g
2

ffiffiffi
b

p
J dtdn

P
Z M

n¼1

Z tf

t¼0

fdk
j ðn; tÞrF ½qkj ðn; tÞ�g

ffiffiffi
b

p
J dtdn

P � 0:8

Z M

n¼1

Z tf

t¼0

frF ½qkj ðn; tÞ�g
2

ffiffiffi
b

p
J dtdn ð21bÞ
We note that the coefficients 0.2, 1.2 and 0.8 appearing

in Eqs. (21a) and (21b) are empirical and are the same

used by Powell [41].

For the Powell–Beale’s version of the Conjugate

Gradient Method, the direction of descent given by Eq.

(20b) is computed in accordance with the following al-

gorithm for kP 1 [41]:

Step 1: Test the inequality (21a). If it is true set

z ¼ k � 1.

Step 2: Compute ckj with Eq. (20c).
Step 3: If k ¼ zþ 1 set vzj ¼ 0. If k 6¼ zþ 1 compute vzj
with Eq. (20d).

Step 4: Compute the search direction dk
j ðn; tÞ with Eq.

(20b).

Step 5: If k > z� 1 test the inequalities (21b). If either

one of them is satisfied set z ¼ k � 1 and

vzj ¼ 0. Then recompute the search direction

with Eq. (20b).

Expressions for the search step sizes bk
j , for j ¼ 1, 2,

are obtained by minimizing F ½qkþ1
1 ðn; tÞ; qkþ1

2 ðn; tÞ� with
respect to bk

1 and bk
2 [34,35]. It results:

bk
1 ¼

C4C5 � C3C1

C5C2 � C2
3

; bk
2 ¼

C1C2 � C3C4

C5C2 � C2
3

ð22a; bÞ

where:

C1 ¼
Z tf

t¼0

XS

s¼1

½T ðrs; t; q1; q2Þ � lsðtÞ�DT2ðrs; t; dk
2 Þdt

ð23aÞ

C2 ¼
Z tf

t¼0

XS

s¼1

½DT1ðrs; t; dk
1 Þ�

2
dt ð23bÞ

C3 ¼
Z tf

t¼0

XS

s¼1

DT1ðrs; t; dk
1 ÞDT2ðrs; t; dk

2 Þdt ð23cÞ

C4 ¼
Z tf

t¼0

XS

s¼1

½T ðrs; t; q1; q2Þ � lsðtÞ�DT1ðrs; t; dk
1 Þdt

ð23dÞ
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C5 ¼
Z tf

t¼0

XS

s¼1

½DT2ðrs; t; dk
2 Þ�

2
dt ð23eÞ

In Eqs. (23a–e), DT1ðrs; t; dk
1 Þ and DT2ðrs; t; dk

2 Þ are the

solutions of the sensitivity problems at the measurement

locations rs ¼ ðns; gsÞ, given by Eqs. (7a–e) for j ¼ 1, 2,

respectively, obtained by setting Dqjðn; tÞ ¼ dk
j ðn; tÞ.

8. Stopping criterion

The iterative procedure of the conjugate gradient

method is not capable of providing by itself regularized
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Fig. 2. Comparison between current and benchmark re
solutions for inverse problems. In fact, it is generally

observed that the random errors present on the mea-

sured variables are amplified for the solution of the in-

verse problem, as a result of its ill-posed character, when

estimated temperatures approach the measured ones

during the minimization of the functional (5). However,

the use of the conjugate gradient method may result on

stable solutions if the Discrepancy Principle [34] is used

to specify the tolerance for the stopping criterion of

the iterative procedure. In the Discrepancy Principle, the

solution is assumed to be sufficiently accurate when the

difference between measured and estimated tempera-
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tures is of the order of magnitude of the measurement

errors, that is,

jT ½ns; gs; t; q1ðn; tÞ; q2ðn; tÞ� � lsðtÞj � r ð24Þ

where r is the standard deviation of the measurements,

which is assumed constant in the present analysis.

The stopping criterion used here is given by

F ½q1ðn; tÞ; q2ðn; tÞ� < e ð25Þ
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Fig. 3. Comparison between current and benchmark resu
where F ½q1ðn; tÞ; q2ðn; tÞ� is computed with Eq. (5). The

tolerance e based on the Discrepancy Principle is

then obtained by substituting Eq. (24) into Eq. (5). It

results:

e ¼ 1

2
Sr2tf ð26Þ

For cases involving errorless measurements, stable so-

lutions for the inverse problem can be obtained by
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specifying the tolerance e as a small number, since no

perturbation is present in the input (measured) data.

However, such is the case only if the sensors are ap-

propriately located in regions where the measurements

are sufficiently sensitive to variations in the unknown

function.

The conjugate gradient method, as applied to the

estimation of the unknown functions qjðn; tÞ, j ¼ 1, 2,

can be arranged in a computational algorithm, which

can be readily adapted from those found in Ref. [35].
9. Results and discussion

9.1. Validation of the direct problem

We now turn our attention to the annular circular

cavity depicted in Fig. 1. The results obtained here for

natural convection of air were compared to those of

Pereira et al. [40] obtained with the Generalized Integral

Transform Technique. The physical properties were

taken as: q ¼ 1:19 kg/m3; l ¼ 1:8� 10�5 kg/m s; b ¼
0:00341 K�1; Pr ¼ 0:70; K ¼ 0:2624 W/mK; Cp ¼ 1020:4
J/kg �C. The test-cases analyzed below correspond to a

Rayleigh number of 5 · 104, where the characteristic

length used was L ¼ R2 � R1. For this Rayleigh number,

R2 was taken as 54.4 mm and R1 as 22.9 mm, while the

temperatures at the walls g ¼ N and g ¼ 1 were taken as

Th ¼ 30 �C and Tc ¼ 20 �C, respectively. The Rayleigh

number was defined as:

RaL ¼
qgbðTh � TcÞL3

la
ð27Þ

Figs. 2 and 3 show a comparison between the current and

the benchmark [40] results for the steady-state dimen-

sionless temperature, Nusselt number at the inner and

outer walls, radial and tangential velocities, respectively,

for the test-case analyzed here. The dimensionless vari-

ables presented in these figures are defined as:

vr ¼
VRL
a

; vh ¼
VHL
a

; r ¼ R
L
;

H ¼ T � Tc
Th � Tc

; Pr ¼ lCp

K
ð28a–eÞ
Table 1

Test cases for the inverse problem

Test-case Depth below the

surface g ¼ 1 (mm)

Depth below the

surface g ¼ N (mm)

Numb

1 0.38 0.13 80

2 0.38 0.13 27

3 0.38 0.13 4

4 0.38 0.68 4

5 1.08 1.25 4

6 1.77 1.83 4

7 1.08 1.25 27
For the current numerical results shown in Figs. 2 and 3,

a finite-volume grid was used with 80· 80 cells. Figs. 2

and 3 show that the present numerical results are in

excellent agreement with those of Ref. [40]. However,

some deviations can be observed at h ¼ 0� and h ¼ 180�
for the tangential velocity. Such deviations are due to

the fact that the current grid did not have enough cells to

capture the velocity at these locations and the numerical

results are shifted of 1�.

9.2. Inverse problem

We will consider in this section the solution of the

inverse problem involving the same direct problem for

which the numerical solution was validated in the pre-

vious section. Therefore, the heat fluxes to be estimated

are those required to maintain the surfaces g ¼ 1 and

g ¼ N at the constant temperatures Tc ¼ 20 �C and

Th ¼ 30 �C, respectively. The initial temperature was

taken as Tc ¼ 20 �C. As a result, the unknown heat

fluxes vary along the surfaces g ¼ 1 and g ¼ N , as well

as in time.

We use simulated temperature measurements for the

solution of the present inverse problem. These mea-

surements are obtained from the solution of the direct

problem for known boundary heat fluxes q1ðn; tÞ and

q2ðn; tÞ, at the surfaces g ¼ 1 and g ¼ N , respectively.

The measurements obtained in such a manner are con-

sidered as exact (ls;exðtÞ) and, in order to simulate

measurement errors, a random term is added to them in

the form:

lsðtÞ ¼ ls;exðtÞ þ xr ð29Þ

where x is a random variable with normal distribution,

zero mean and unitary standard deviation and r is the

standard deviation of the measurement errors.

We examined in this work several test-cases involving

different numbers and positions of sensors, as well as

different levels of simulated random measurement er-

rors. Table 1 summarizes such test-cases and the RMS

errors for each of the estimated functions. The RMS

error is defined as:
er of sensors r (�C) eRMS (W/m2)

g ¼ 1

eRMS (W/m2)

g ¼ N

0.00 0.55 5.49

0.00 0.69 7.26

0.00 0.90 6.44

0.00 1.20 10.22

0.00 2.51 13.06

0.00 4.09 14.58

0.6 6.33 14.90
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eRMS;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðM � 1ÞI
XM�1

m¼1

XI

i¼1

½qex;jðnm; tiÞ � qest;jðnm; tiÞ�2
vuut

for j ¼ 1; 2: ð30Þ

Test-cases 1–6 involve the use of errorless (r ¼ 0)

measurements in the inverse analysis, while test-case 7

involve the use of measurements of standard deviation

r ¼ 0:6 �C. Since the measurement errors are assumed
0
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0

ξ
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Fig. 4. Results for test-case 5:
to be additive, uncorrelated and normally distributed,

with zero mean and constant standard deviation, at the

99% confidence level the measurement errors are at most

1.6 �C in magnitude. For all test-cases we have assumed

available measurements every 0.005 s (200 Hz) for each

sensor and the final time was taken as 40 s. The initial

guesses were taken as q1ðn; tÞ ¼ q2ðn; tÞ ¼ 0:1 W/m2. By

examining Eqs. (13e), (18b) and (19), we can notice that

the gradient of the functional is null at the final time
10
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(a) n ¼ 79, (b) t ¼ 7:5 s.
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t ¼ tf . Therefore, the initial guesses used for q1ðn; tÞ and
q2ðn; tÞ at t ¼ tf are never changed by the iterative pro-

cedure of the conjugate gradient method. As a result,

oscillations may appear in the solution in the neigh-

borhood of the final time, if the initial guesses are too

different from the exact solutions. Thus, a final time

larger than that of interest was used in the analysis, so
0
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Fig. 5. Results for test-case 6:
that the effects of the initial guesses were not noticeable

in the time domain that the solution was sought.

Since the numbers of sensors in test-cases 2–7 were

smaller than the number of control volumes used for the

discretization, an interpolation procedure was used for

the measured temperatures along the n direction.

NETLIB’s subroutine GCVSPL, based on the cross-
8 10
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60 80
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4 sensors @ 1.77 / 1.83 mm

(a) n ¼ 79, (b) t ¼ 7:5 s.
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validation smoothing procedure, was used for the in-

terpolation. The sensors were assumed to be evenly lo-

cated along the n direction, near each of the boundaries

with unknown flux.

Test-case 1 represents an ideal case where there is one

sensor at each control volume next to the surfaces g ¼ 1

and g ¼ N (0.38 mm below the surface at g ¼ 1 and 0.13

mm below the surface at g ¼ N ). This test-case gives the
0
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Fig. 6. Results for test-case 7:
minimum RMS error for the grid size used for the cur-

rent simulation. Note in Table 1 that, as we decrease the

number of sensors from 80 in test-case 1 to 4 in test-case

3, the RMS error increases since less information is

available from the measurements inside the cavity.

Similarly, the RMS error increases when the sensors are

located deeper inside the cavity, as we can notice by

comparing test-cases 3 and 4 in Table 1.
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Fig. 4a and b present the results for test-case 5, where

four sensors were located 1.08 mm below the surface at

g ¼ 1 and four sensors were located 1.25 mm below the

surface at g ¼ N . These figures show that quite accurate

results can be obtained with only four sensors located

about 1 mm below each surface, for the physical prob-

lem considered in this paper. Note in Fig. 4a that the

exact functions are underestimated at n ¼ 79 after t ¼ 2

s; also note in Fig. 4b that the estimated functions tend

to oscillate about the exact ones for t ¼ 7:5 s. However,

the sharp variation of the heat flux at g ¼ 1 around 2 s is

accurately captured, as illustrated in Fig. 4a.

The accuracies of the estimated functions deteriorate

if the sensors are located deeper into the cavity, as il-

lustrated in Fig. 5a and b, which present the results

obtained for test-case 6. For such test-case, four sensors

were located about 1.8 mm below each of the surfaces.

In fact, no accurate results could be obtained with sen-

sors farther than 1.8 mm from the surfaces with un-

known fluxes, because they were located outside the

thermal boundary layers and, therefore, were not sen-

sitive to variations in the boundary heat fluxes.

We now examine the results obtained for test-case 7,

with measurements containing random errors of stan-

dard deviation r ¼ 0:6 �C. For test-case 7, the mea-

surements of 27 sensors located near each of the

boundaries were assumed available for the inverse

analysis. The sensors were located 1.08 mm below the

surface at g ¼ 1 and 1.25 mm below the surface at

g ¼ N . Fig. 6a and b show that the estimated functions

are in very good agreement with the exact ones for such

test-case, although some oscillations are observed in the

inverse problem solution, specially near the sharp vari-

ation around 2 s at g ¼ N (see Fig. 6a).
10. Conclusions

In this paper we applied the conjugate gradient

method with adjoint problem for the simultaneous

identification of two boundary heat fluxes in a natural

convection problem in an irregular cavity. A function

estimation approach was utilized, where no information

was assumed available regarding the functional form of

the unknowns. The more involved inverse problem

concerned with the estimation of position- and time-

dependent functions was examined. Direct and inverse

problems were formulated in terms of generalized co-

ordinates. Therefore, the present solution procedure can

readily be applied to cavities with different geometries.

Results obtained with simulated temperature mea-

surements reveal that quite accurate estimates can be

obtained for the unknown functions with the present

inverse problem approach. However, the sensors need to

be located near each of the surfaces, inside the thermal
boundary layer, in order to be sensitive to variations on

the boundary heat flux.
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